LLH/LWH/ LFH/LFGH price checkers’ transmission protocol (LAN communication)

LLH, LWH, LFH and LFGH price checkers’ transmission protocol
(LAN communication)

General characteristics

1. Each price checker has got its own IP number.

This number is stored in a price checker’s memory and can be configured though a LAN network. Each price checker requires unique IP number in the given LAN network.

To communicate with a price checker have to be known its IP number.

For communication with a price checker is used UDP protocol (1001 port number).

Reception of each data frame have to be confirmed by resent data frame or by acknowledgement command.

In case of not receiving confirmation within 1 second a data frame should be sent again (maximum 3 times).

2. Used symbols.

Symbol
Value
Description

STX
02H
Text block beginning

ETX
03H
Text block end

ENQ
05H
Emulation mode

ACK
06H
Confirmation of data frame reception

LF
0AH
Line feed

CR
0DH
Data end

ESC
1BH
Beginning of sequence for graphical display

3. Data frame.

STX
<FRAME_NO>
<DATA_FRAME>
ETX

1
1
Variable length (1..1024)
1

4. Acknowledgement frame.

STX
<FRAME_NO>
ACK
ETX

1
1
1
1

5. <FRAME_NO>

ASCII character from the range 80H.. FFH (128..255)

6. <DATA_FRAME>

ASCII characters from the range 20H.. FFH (32..255) plus LF, CR, ESC, ENQ symbols

< DATA_FRAME > = <COMMAND><DATA>

or

< DATA_FRAME > = <COMMAND>

<COMMAND> – command byte, ASCII character from the range 20H..FFH (32..255)

<DATA> – ASCII character from the range 20H..FFH (32..255) plus LF, CR, ESC symbols, variable quantity of characters depending on the command type.

PC – price checker sequence syntax

By character „*” in the sequence description header are marked sequences which are used in graphical display price checkers (LFGH price checker) .

During barcode reading a price checker is a MASTER device and a PC is a SLAVE one.

In other cases a price checker is a SLAVE device and a PC is a MASTER one.

Price checker’s data request for given barcode

a) For LLH/LWH/LFH price checker (displaying text in 2 lines).

Price checker
PC

STX FRAME_NO 1 BarCode ETX

STX FRAME_NO 1 SCode CHARACTERS_DISPLAY1 SIGNAL TIME ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = MASTER, PC = SLAVE

FRAME_NO is generated by the price checker and placed in the request frame.

The PC is placing FRAME_NO received from the price checker in the response frame what acknowledges at the same time reception of the request by the PC.

After receiving response from the PC the price checker acknowledges reception of the response by sending the frame with ACK and FRAME_NO to the PC.

BarCode – barcode ASCII characters finished with CR sign.

In version 1 of price checker’s firmware version are sent maximum 20 barcode characters and from version 2 are sent maximum 23 barcode characters.

SCode – CRC16 checksum of the barcode sent to the PC,

in the Appendix No. 1 is shown the source code of the function calculating the CRC16 sum in Pascal language,

as the starting value for CRC16 calculation algorithm should be considered 0,

after calculating this sum the highest bit in both bytes should be set to 1,

lowest checksum byte is sent first,

SIGNAL – voice signal – one ASCII character:

‘0’ – no signal

‘1’ – acknowledgement signal

‘2’ – error signal.

TIME – time of text displaying in seconds, two ASCII characters, e.g. ‘03’ means 3 seconds,

if TIME = ‘00’ then text is displayed till the next barcode is read.

CHARACTERS_DISPLAY1 – characters to display, two lines of text, 20 characters maximum each, totally maximum 40 characters, each line should be finished with LF sign if there is less than 20 characters to display.

b) * For LFGH price checker (displaying text in 3 lines).

PRICE CHECKER
PC

STX FRAME_NO 6 BarCode ETX

STX FRAME_NO 6 SCode BACKGROUND_NO CHARACTERS_DISPLAY2 SIGNAL TIME ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = MASTER, PC = SLAVE

FRAME_NO is generated by the price checker and placed in the request frame.

The PC is placing FRAME_NO received from the price checker in the response frame what acknowledges at the same time reception of the request by the PC.

After receiving response from the PC the price checker acknowledges reception of the response by sending the frame with ACK and FRAME_NR to the PC.

BACKGROUND_NO – the number of the background on which text is displayed = one of ‘0’...’9’ or ‘A’...’F’ characters.

CHARACTERS_DISPLAY2 – characters to display, three lines of text, 32 characters maximum each, totally maximum 96 characters, each line should be finished with LF sign if there is less than 32 characters to display.

The price checker is automatically adjusting the size of characters to be displayed in the particular lines. The principle of the adjustment is based on the quantity of characters which should be displayed in the particular line:

· in case of displaying less than 21 characters the large size character generator is in use,

· in case of displaying not more than 24 characters the medium size character generator is in use,

· in case of displaying more than 24 characters the small size character generator is in use.

c) * For LFGH price checker (unconstrained displaying – free formatting of displayed text).

PRICE CHECKER
PC

STX FRAME_NO(1) 6 BarCode ETX

STX FRAME_NO(1) 7 SCode DATA_DISPLAY(1) ETX

STX FRAME_NO(1) ACK ETX

STX FRAME_NO(2) 7 SCode DATA_DISPLAY (2) ETX

STX FRAME_NO(2) ACK ETX

........
......

STX FRAME_NO(N) 7 SCode DATA_DISPLAY (N) CR SIGNAL TIME ETX

STX FRAME_NO(N) ACK ETX

While executing the first part of this task: PRICE CHECKER = MASTER, PC = SLAVE

FRAME_NO(1) is generated by the price checker and placed in the request frame.

In the first response frame the PC is placing FRAME_NO(1) received from the price checker what acknowledges at the same time reception of the request by the PC.

After receiving the first response from the PC the price checker acknowledges reception of the response by sending the frame with ACK and FRAME_NR to the PC.

While executing the second part of this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO(x, where x≥2) is generated by the PC and placed in the data frame for displaying DATA_DISPLAY(x).

After receiving the data DATA_DISPLAY(x) from the PC the price checker acknowledges reception of data by sending the frame with ACK and FRAME_NR(x) to the PC.

Remarks

· frame sequences:

· STX FRAME_NO(x) 7 SCode DATA_DISPLAY(x) ETX

· STX FRAME_NO(x) ACK ETX

can be repeated many times,

· in the last sequence after DATA_DISPLAY(x) section should be sent CR sign meaning: end of data for displaying,

· the total capacity of data sent between the beginning of the first frame till the CR sign can not exceed 1 kB.

DATA_DISPLAY(x) – texts and display controlling sequences described in the Appendix No. 2.

* Special characters displayed on the graphical display.

Graphical display enables to display pre-defined EUR currency symbol. Such a currency symbol occupies two bordering cells on the display. There should be sent two ASCII characters with codes:

CAH and CBH – these are ‘left’ and ‘right’ parts of EUR sign.

Graphical display enables to display pre-defined dot, coma and space symbols which occupy half of the unit cell of the display. Thanks this “half-size” characters displaying amounts can be better formatted.

To display such symbols there should be sent ASCII characters with codes:

CCH – to display “half-size” dot symbol

CDH – to display “half-size” coma symbol

CEH – to display “half-size” space symbol.

Price checker status request

PC
PRICE CHECKER

STX FRAME_NO 3 ETX

STX FRAME_NO 3 DISP PRINT STATE VERSION ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

After receiving response from the price checker the PC acknowledges reception of the response by sending the frame with ACK and FRAME_NR to the price checker.

DISP – price checker’s display type (one ASCII character):

‘1’ – text LCD, 2x20 characters

‘2’ – graphical LCD, 192x64 pixels.

PRINT – type of printer used in the price checker (one ASCII character):

‘0’ – no printer

STATE – state of the price checker

b7
b6
b5
b4
b3
b2
b1
b0

b0 = 0

b1 = 0

b2 = 0

b3 = 1 – fault display

b4 = 1 – low voltage of CMOS battery backup

b5 = 0

b6 = [0/1] – price checker is requesting PC for a barcode using a sequence with a number [1/6]

b7 = 1

VERSION – price checker’s firmware version, text finished with CR sign, maximum 20 characters.

Transmitting advertising texts

PC
PRICE CHECKER

STX FRAME_NO 4 NUMBER TIME T_ATTRIBUTE TEXT ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

NUMBER – number of advertisement, one ASCII character from the range ‘0’..’9’

TIME – time of text displaying in seconds, two ASCII characters, e.g. ‘03’ means 3 seconds,

if TIME = ‘00’ then text is displayed till the next barcode is read.

T_ATTRIBUTE – advertising text displaying mode:

b7
b6
b5
b4
b3
b2
b1
b0

b0..b5 – number of displaying mode:

0 – text displayed without additional effects

1 – text inserted from the right side of the display without erasing previous contents of it

2 – text inserted from the left side of the display with erasing previous contents of it

3 – text inserted from the right side of the display with erasing previous contents of it

4 – text inserted from the left side of the display without erasing previous contents of it

b6 – repeating of inserted text (looped in the scope of the single advertising text)

b7 – always “1”

TEXT – advertising text, 2 lines maximum 20 characters each, totally maximum 40 characters, each line should be finished with LF sign if there is less than 20 characters to display.

* Transmitting advertising graphics settings

PC
PRICE CHECKER

STX FRAME_NO 8 TAB_NUMBER NUMBER TIME G_ATTRIBUTE ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

Price checker is reviewing records ordered from 0 to 31.

TAB_NUMBER – number of the record from the table, one ASCII character ‘0’..’9’ or ‘A’..’V’, the table consists of 32 records.

NUMBER – number of the advertising graphics, one ASCII character ‘0’..’9’ or ‘A’..’F’, price checker is able to store 16 advertising graphics.

TIME – time of text displaying in seconds, two ASCII characters

when b1 bit of G_ATTRIBUTE = 0 then e.g. ‘03’ means 3 seconds,

when b1 bit of G_ATTRIBUTE = 1 then time is calculated from the formula: TIME * 0.071, e.g. ‘03’ means 0,21 second,

if TIME = ‘00’ then text is displayed till the next barcode is red.

G_ATTRIBUTE – advertising graphics displaying mode:

b7
b6
b5
b4
b3
b2
b1
b0

b0 = [0/1] switching OFF/ON advertising graphics displaying

b1 = 0 – time given in seconds, 1 – time given in 0.071 fraction of a second

b2 .. b6 – reserved, “0” value actually

b7 – always “1”.

Advertising graphics settings table:

TAB_NUMBER
NUMBER
TIME
G_ATTRIBUTE

0

1

...
...
...
...

9

A

...
...
...
...

V

* Emulation mode

To be compatible with the older versions of price checkers (LLH/LWH/LFH) the LFGH price checker can be switched into two line displaying mode.

PC
PRICE CHECKER

STX FRAME_NO 9 ESC ENQ PARAM ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

PARAM – three bytes describing graphical display price checker’s mode of working:

AAH AAH AAH
 – price checker will enquire for barcode with ‘6’ sequence number

 95H 95H 95H – price checker will enquire for barcode with ‘1’ sequence number (as LLH/LWH/LFH price
checkers).

* Data transmission to the graphical display price checker

PC
PRICE CHECKER

STX FRAME_NO 9 DATA_DISPLAY ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

DATA_DISPLAY – data transmitted to the graphical display obtaining: controlling sequences, graphics, text; detail description is available in the display manual.

REMINDER: maximal capacity of the frame is 1024 bytes.

Transmitting fixed texts

PC
PRICE CHECKER

STX FRAME_NO 5 NUMBER TIME TEXT ETX

STX FRAME_NO ACK ETX

While executing this task: PRICE CHECKER = SLAVE, PC = MASTER

FRAME_NO is generated by the PC and placed in the request frame.

After receiving the request from the PC the price checker acknowledges reception of the request by sending the frame with ACK and FRAME_NR to the PC.

NUMBER – number of the fixed text, one ASCII character ‘0’..’6’

TIME – time of text displaying in seconds, two ASCII characters, e.g. ‘03’ means 3 seconds,

if TIME = ‘00’ then text is displayed till the next barcode is read.

TEXT – fixed text, one line, maximum 20 characters, the line should be finished with LF sign if there is less than 20 characters to display.

Default fixed texts available at the price checker:

NUMBER
TEXT
TIME

0
ÁRELLENŐRZŐ

1
PROGRAM VER. SPR2.02
2

2
KERESÉS
10

3
HELYEZZE A TERMÉKET

4
A LEOLVASÓ ELÉ
3

5
SZERVER HIBA

6

3

Appendix No. 1.

Source code of the function calculating the CRC16 sum in Pascal language.

function TypReceivingChannel.SumCRC16(DataForSum : string) : string;

const

 TableCRC16 : array [0..255] of word =

 (

 $0000, $C0C1, $C181, $0140, $C301, $03C0, $0280, $C241,

 $C601, $06C0, $0780, $C741, $0500, $C5C1, $C481, $0440,

 $CC01, $0CC0, $0D80, $CD41, $0F00, $CFC1, $CE81, $0E40,

 $0A00, $CAC1, $CB81, $0B40, $C901, $09C0, $0880, $C841,

 $D801, $18C0, $1980, $D941, $1B00, $DBC1, $DA81, $1A40,

 $1E00, $DEC1, $DF81, $1F40, $DD01, $1DC0, $1C80, $DC41,

 $1400, $D4C1, $D581, $1540, $D701, $17C0, $1680, $D641,

 $D201, $12C0, $1380, $D341, $1100, $D1C1, $D081, $1040,

 $F001, $30C0, $3180, $F141, $3300, $F3C1, $F281, $3240,

 $3600, $F6C1, $F781, $3740, $F501, $35C0, $3480, $F441,

 $3C00, $FCC1, $FD81, $3D40, $FF01, $3FC0, $3E80, $FE41,

 $FA01, $3AC0, $3B80, $FB41, $3900, $F9C1, $F881, $3840,

 $2800, $E8C1, $E981, $2940, $EB01, $2BC0, $2A80, $EA41,

 $EE01, $2EC0, $2F80, $EF41, $2D00, $EDC1, $EC81, $2C40,

 $E401, $24C0, $2580, $E541, $2700, $E7C1, $E681, $2640,

 $2200, $E2C1, $E381, $2340, $E101, $21C0, $2080, $E041,

 $A001, $60C0, $6180, $A141, $6300, $A3C1, $A281, $6240,

 $6600, $A6C1, $A781, $6740, $A501, $65C0, $6480, $A441,

 $6C00, $ACC1, $AD81, $6D40, $AF01, $6FC0, $6E80, $AE41,

 $AA01, $6AC0, $6B80, $AB41, $6900, $A9C1, $A881, $6840,

 $7800, $B8C1, $B981, $7940, $BB01, $7BC0, $7A80, $BA41,

 $BE01, $7EC0, $7F80, $BF41, $7D00, $BDC1, $BC81, $7C40,

 $B401, $74C0, $7580, $B541, $7700, $B7C1, $B681, $7640,

 $7200, $B2C1, $B381, $7340, $B101, $71C0, $7080, $B041,

 $5000, $90C1, $9181, $5140, $9301, $53C0, $5280, $9241,

 $9601, $56C0, $5780, $9741, $5500, $95C1, $9481, $5440,

 $9C01, $5CC0, $5D80, $9D41, $5F00, $9FC1, $9E81, $5E40,

 $5A00, $9AC1, $9B81, $5B40, $9901, $59C0, $5880, $9841,

 $8801, $48C0, $4980, $8941, $4B00, $8BC1, $8A81, $4A40,

 $4E00, $8EC1, $8F81, $4F40, $8D01, $4DC0, $4C80, $8C41,

 $4400, $84C1, $8581, $4540, $8701, $47C0, $4680, $8641,

 $8201, $42C0, $4380, $8341, $4100, $81C1, $8081, $4040

);

variables

 Counter : byte;

 TableIndicator : byte;

 SumValue : word;

begin

 SumValue := 0;

 for Counter := 1 to Length(DataForSum) to

 begin

 TableIndicator := (byte(SumValue)) xor byte(DataForSum[Counter]);

 SumValue := (SumValue shr 8) xor TableCRC16[TableIndicator];

 end;

 SumValue := SumValue or $8080;

 Result := chr(Lo(SumValue))+chr(Hi(SumValue));

end;

1/7

