Procedures and functions from Winseria.Dll Library

2Introduction

1. OPENING SERIAL PORT
2
2. ERROR HANDLING
2
3. CLOSING SERIAL PORT
3
4. SENDING ONE BYTE
3
5. SENDING CHAIN OF BYTES
3
6. RECEIVING ONE BYTE
3
7. READING CHAIN OF BYTES
4
8. READING INFORMATION ABOUT TIMEOUT DETECTION
4
9. BUFFERS CLEARING
4
10. CONTROL (ESCAPE) SEQUENCES HANDLING
5

Introduction

Winseria.Dll supports 32-bits applications developments. It includes basic serial communication functions for fiscal printer. One application can support only one serial port. When you would like work two ports together you must use two applications.

Below short description of Winseria.Dll procedures and functions.

1. OPENING SERIAL PORT

Function initializes serial port.

InitializePort (Port:byte; BaudRate:dword;

 WriteTimeout, ReadTimeout:word) :integer;

Parametres:
· Port = (1, 2, 3, 4)

Attention: before opening serial port check if no mouse or other serial device is connected to port,

· BaudRate = (110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000,

256000);

· WriteTimeout – maximum time (in seconds) of waiting for writing one character,

 (from 1 to 65535);

· ReadTimeout – maximum time (in seconds) of waiting for receiving one character,

 (from 1 to 65535);

Return value:

0 – port opened properly

in other case <>0; error description by calling IsError function or in other sources of error description
 (function returns GerLastError return value)

2. ERROR HANDLING

Information if there an error occured.

IsError (var ErrorMsg:PChar; var ErrorCode:Integer) :boolean;

Parametres
· ErrorMsg – returns error description if Er rorCode<>0

· ErrorCode – returns error code; ErrorCode = 0 means no error detected; .
Return value:

False – no error (ErrorCode = 0)

True – there was an communication error (ErrorCode <> 0)

Attention – before calling function you must allocate enough memory for ErrorMsg variable;

 In other case function returns False and ErrorCode returns -1

3. CLOSING SERIAL PORT

Function closes serial port opened by InitializePort.
UnInitializePort :integer;

Return value:

0 – port closed properly

in the other case function returns error code (see description in point 1)

4. SENDING ONE BYTE

Function writes one byte to the serial port

WriteByte (wByte:byte) :integer

Parametres:
· wByte: character to transmit (ASCII code of character)

Return value:

1 – byte written properly

 0 – improper writing, sending timeout (because of e.g. closed port, improperly connected fiscal printer,
 improperly set timeout)

5. SENDING CHAIN OF BYTES

Function writes to serial port more bytes

WriteData (MaxLen:integer; Buffer:Pchar) :integer;

Parametres:

· MaxLen – quantity of bytes to send

· Buffer – pointer to data to send
Return value:

Quantity of bytes written

 or

 0 – improper writing, sending timeout (because of e.g. closed port, improperly connected fiscal printer,
 improperly set timeout)

If function returns the same value as MaxLen it means all bytes were written properly.

6. RECEIVING ONE BYTE

Function returns byte read from serial port.

ReadByte (var rByte:byte) :integer;

Parametres:

· rByte – variable prepared to fill by byte from serial port

Return value:

1 – byte read properly

 0 – improper reading, receiving timeout (because of e.g. closed port, improperly connected fiscal
 printer, improperly set timeout)

7. READING CHAIN OF BYTES

Functions returns more bytes read from serial port.

ReadData (MaxLen:integer; var Buffer: tChBuffer) :integer;

Used type of data:

tChBuffer = array[0..255] of char;

Parametres:

· MaxLen – maximum number of bytes to read;

· Buffer – array of read bytes

Return value:

Number of read bytes

 or

 0 – improper reading , receiving timeout (because of e.g. closed port, improperly connected fiscal
 printer, improperly set timeout)

8. READING INFORMATION ABOUT TIMEOUT DETECTION

Function informes if writing or reading byte operation was properly made. If write/read was proper function returns FALSE.

TimeOut :boolean;

Return value:
True –if:

1. If writing by WriteByte or WriteData was not succesfull - sending timeout

2. If no character was received by ReadByte or ReadData – receiving timeout

False – good quantity of bytes was received/ sent

9. BUFFERS CLEARING

Function clears input and ouput buffers of currently opened serial port. Should be called e.g. after incomplete receiving characters.

ClearPort :integer;

Return value:

0 – finished properly

in other case error code

10. CONTROL (ESCAPE) SEQUENCES HANDLING

Function handles control sequences of fiscal printer. Control codes are available in „Programmer manual for FP-600”

RSSequence (ControlCode:byte;

 QuantityOfBytesToReceive:byte;

 QuantityOfBytesToSend:byte;

 var InputBuffer:tBufferOfBytes;

 OutputBuffer:tBufferOfBytes) :byte

Used type of data

tBufferOfBytes = array[1..256] of byte

Parametres

· ControlCode – control code from programmers manual (ESC is sent automatically before every control code);

· QuantityOfBytesToReceive – quantity of bytes to read directly after sending control code (max 256 bytes)

· QuantityOfBytesToSend – quantity of bytes to send to fiscal printer if printer can receive these bytes (e.g. if answer after control code is ACK (0x06));

· InputBuffer – array for received data; max number of received bytes QuantityOfBytesToReceive;

· OutputBuffer – array of bytes to send; function sends number of bytes get by QuantityOfBytesToSend.

Return value:
 0 = function completed succesfully

20 = sending timeout; this error exists also when port is not opened

21 = receiving timeout

23 = improper answer from fiscal printer

24 = received NAK

Example of calling function in Pascal – receiving status byte

{type and variable declaration}

type

tBuforBajtow = Array[1..256] of Byte;

var

BufBajtowOdebr :tBuforBajtow;

BufBajtowDoPosl :tBuforBajtow;

Result :byte;

 {a bit of code}

FillChar(BufBajtowOdebr, SizeOf(BufBajtowOdebr), 0);

Result := RSSequence ($5B, 2, 0, BufBajtowOdebr, BufBajtowDoPosl);

if Result <> 0 then

 {if error do ...}

else

 {if finished properly do}

If function return value = 0 ,then in array of received bytes in zero-index element you find ACK (0x06) and in one-index element you find status byte. If value of function is 24 it means printer sent NAK (BufBajtowOdebr[0]=0x15)

1

